Matlab is a registered trademark of The Mathworks, Inc.


 Advanced Source Code . Com

 
 
HOME SOURCE CODE SOFTWARE INFO SUPPORT CONTACT US
 
Source code for fingerprint recognition, face recognition and much more


Software Info    About us     
Go To Matlab Official Website

.: Click here to download :.

Plants exist everywhere we live, as well as places without us. Many of them carry significant information for the development of human society. The urgent situation is that many plants are at the risk of extinction. So it is very necessary to set up a database for plant protection. We believe that the first step is to teach a computer how to classify plants. Compared with other methods, such as cell and molecule biology methods, classification based on leaf image is the first choice for leaf plant classification. Sampling leaves and photoing them are low-cost and convenient. One can easily transfer the leaf image to a computer and a computer can extract features automatically in image processing techniques. Some systems employ descriptions used by botanists. But it is not easy to extract and transfer those features to a computer automatically.

We have developed an efficient algorithm for leaf classification that combines high-order statistics of image features together with shape information and neural network as nonlinear classifier. The code has been tested with FLAVIA database achieving an excellent recognition rate of 92.09% (32 classes, 40 training images and the remaining images used for testing for each class, hence there are 1280 training images and 627 test images in total randomly selected and no overlap exists between the training and test images).

FLAVIA source code and dataset are available at this URL http://flavia.sourceforge.net. Our approach outperforms this algorithm and moreover it does not require any human interfered part. In FLAVIA algorithm in fact you need to mark the two terminals of the main vein of the leaf via mouse click. The distance between the two terminals is defined as the physiological length.

Stephen Gang Wu, Forrest Sheng Bao, Eric You Xu, Yu-Xuan Wang, Yi-Fan Chang and Chiao-Liang Shiang, A Leaf Recognition Algorithm for Plant classification Using Probabilistic Neural Network, IEEE 7th International Symposium on Signal Processing and Information Technology, Dec. 2007, Cairo, Egypt.

Index Terms: Matlab, source, code, neural network, feature extraction, leaf recognition, plant classification.

 

 

 

 

Figure 1. Leaf



A simple and effective source code for Leaf Recognition System.

Demo code (protected P-files) available for performance evaluation. Matlab Image Processing Toolbox, Matlab Signal Processing Toolbox and Matlab Neural Network Toolbox are required.

Release
Date
Major features
1.0

2009.04.09



We recommend to check the secure connection to PayPal, in order to avoid any fraud.
This donation has to be considered an encouragement to improve the code itself.

Leaf Recognition System. Click here for your donation. In order to obtain the source code you have to pay a little sum of money: 1300 EUROS (less than 1820 U.S. Dollars).

Once you have done this, please email us luigi.rosa@tiscali.it
As soon as possible (in a few days) you will receive our new release of Leaf Recognition System.

Alternatively, you can bestow using our banking coordinates:
Name :
Luigi Rosa
Address :
Via Pozzo Strada 5 10139 Torino Italy
Bank name:
Poste Italiane
Bank address:
Viale Europa 190 00144 Roma Italy
IBAN (International Bank Account Number) :
IT-50-V-07601-03600-000058177916
BIC (Bank Identifier Code) :
BPPIITRRXXX

The authors have no relationship or partnership with The Mathworks. All the code provided is written in Matlab language (M-files and/or M-functions), with no dll or other protected parts of code (P-files or executables). The code was developed with Matlab 2006a. Matlab Image Processing Toolbox, Matlab Signal Processing Toolbox and Matlab Neural Network Toolbox are required. The code provided has to be considered "as is" and it is without any kind of warranty. The authors deny any kind of warranty concerning the code as well as any kind of responsibility for problems and damages which may be caused by the use of the code itself including all parts of the source code.

New - Python Face Recognition
 Biometric Authentication with Python We have developed a fast and reliable Python code for face recognition based on Principal Component Analysis (PCA). Proposed algorithm results computationally inexpensive and it can run also in a low-cost pc such as Raspberry PI.
 
New - Raspberry PI Remote Desktop
 Raspberry PI Remote Desktop A complete and detailed PDF tutorial to learn how to connect to and from a Raspberry PI using Remote Desktop.
 
New - Speaker Verification System
 Text-Independent Speaker Authentication There are two major applications of speaker recognition technologies and methodologies. If the speaker claims to be of a certain identity and the voice is used to verify this claim, this is called verification or authentication.
 
New - Java Face Recognition
 Java-based Biometric Authentication System Face recognition is essential in many applications, including mugshot matching, surveillance, access control and personal identification, and forensic and law enforcement applications.
 
New - White Papers
 High Capacity Wavelet Watermarking Using CDMA Multilevel Codes This paper proposes a technique based on CDMA and multilevel coding in order to achieve a high capacity watermarking scheme. The bits of watermark are grouped together and for each sequence a different modulation coefficient is used.
 
New - WebCam Face Identification
 Face Recognition Based on Fractional Gaussian Derivatives Local photometric descriptors computed for interest regions have proven to be very successful in applications such as wide baseline matching, object recognition, texture recognition, image retrieval, robot localization, video data mining, building panoramas, and recognition of object categories.
 
New - Speaker Recognition System
 Source code for speaker recognition
Speaker recognition is the process of automatically recognizing who is speaking on the basis of individual information included in speech waves.
 
New - Speech Recognition System
 Source code for isolated words recognition
Speech recognition technology is used more and more for telephone applications like travel booking and information, financial account information, customer service call routing, and directory assistance. Using constrained grammar recognition, such applications can achieve remarkably high accuracy.
 



The MathWorks, Inc. Google NeuralNetworks.It Octave Scilab The R Project for Statistical Computing Python Other available resources English Dictionary Download .Com
 
Software Info    About us