Matlab is a registered trademark of The Mathworks, Inc.


 Advanced Source Code . Com

 
 
HOME SOURCE CODE SOFTWARE INFO SUPPORT CONTACT US
 
Source code for fingerprint recognition, face recognition and much more


Software Info    About us     
Go To Matlab Official Website

.: Click here to download :.

Correlation filters have been applied successfully to automatic target recognition (ATR) problems. The most basic correlation filter is the matched spatial filter (MSF), whose impulse response (in 2-D, point spread function) is the flipped version of the reference image. While the MSF performs well at detecting a reference image corrupted by additive white noise, it performs poorly when the reference image appears with distortions (e.g., rotations, scale changes). Thus one MSF will be needed to detect each appearance of an object. Clearly this is computationally unattractive for practical pattern recognition. Hester and Casasent addressed this challenge with the introduction of the synthetic discriminant function (SDF) filter. The SDF filter is a linear combination of MSFs where the combination weights are chosen so that the correlation outputs corresponding to the training images would yield pre-specified values at the origin. These pre-specified peak values are often referred to as peak constraints. The peak values corresponding to the authentics (also called the true class) are typically set to 1, and hence this SDF filter was known as the equal correlation peak (ECP) SDF filter. In principle, a single ECP SDF filter could replace many MSFs. Object recognition is performed by cross-correlating an input image with a synthesized template or filter and processing the resulting correlation output. The correlation output is searched for peaks, and the relative heights of these peaks are used to determine whether the object of interest is present or not. The locations of the peaks indicate the position of the objects.

Face verification is an important tool for authentication of an individual and it can be of significant value in security and e-commerce applications. We have developed an effective application of correlation filters for face verification. The performance of a specific type of correlation filter called the minimum average correlation energy (MACE) filter is evaluated using Facial Expression Database collected at the Advanced Multimedia Processing Lab at Carnegie Mellon University (CMU).

Index Terms: Matlab, source, code, face, identification, authentication, recognition, correlation, filters, filter, mace.

 

 

 

 

Figure 1. Correlation filters



A simple and effective source code for Correlation Filters Face Verification.

Demo code (protected P-files) available for performance evaluation. Matlab Image Processing Toolbox is required.

Release
Date
Major features
2.0

2011.12.07

  • Minor bug fixed
1.0

2010.08.10



We recommend to check the secure connection to PayPal, in order to avoid any fraud.
This donation has to be considered an encouragement to improve the code itself.

Correlation Filters Face Verification. Click here for your donation. In order to obtain the source code you have to pay a little sum of money: 300 EUROS (less than 420 U.S. Dollars).

Once you have done this, please email us luigi.rosa@tiscali.it
As soon as possible (in a few days) you will receive our new release of Correlation Filters Face Verification.

Alternatively, you can bestow using our banking coordinates:
Name :
Luigi Rosa
Address :
Via Pozzo Strada 5 10139 Torino Italy
Bank name:
Poste Italiane
Bank address:
Viale Europa 190 00144 Roma Italy
IBAN (International Bank Account Number) :
IT-50-V-07601-03600-000058177916
BIC (Bank Identifier Code) :
BPPIITRRXXX

The authors have no relationship or partnership with The Mathworks. All the code provided is written in Matlab language (M-files and/or M-functions), with no dll or other protected parts of code (P-files or executables). The code was developed with Matlab 2006a. Matlab Image Processing Toolbox is required. The code provided has to be considered "as is" and it is without any kind of warranty. The authors deny any kind of warranty concerning the code as well as any kind of responsibility for problems and damages which may be caused by the use of the code itself including all parts of the source code.

New - Python Face Recognition
 Biometric Authentication with Python We have developed a fast and reliable Python code for face recognition based on Principal Component Analysis (PCA). Proposed algorithm results computationally inexpensive and it can run also in a low-cost pc such as Raspberry PI.
 
New - Raspberry PI Remote Desktop
 Raspberry PI Remote Desktop A complete and detailed PDF tutorial to learn how to connect to and from a Raspberry PI using Remote Desktop.
 
New - Speaker Verification System
 Text-Independent Speaker Authentication There are two major applications of speaker recognition technologies and methodologies. If the speaker claims to be of a certain identity and the voice is used to verify this claim, this is called verification or authentication.
 
New - Java Face Recognition
 Java-based Biometric Authentication System Face recognition is essential in many applications, including mugshot matching, surveillance, access control and personal identification, and forensic and law enforcement applications.
 
New - White Papers
 High Capacity Wavelet Watermarking Using CDMA Multilevel Codes This paper proposes a technique based on CDMA and multilevel coding in order to achieve a high capacity watermarking scheme. The bits of watermark are grouped together and for each sequence a different modulation coefficient is used.
 
New - WebCam Face Identification
 Face Recognition Based on Fractional Gaussian Derivatives Local photometric descriptors computed for interest regions have proven to be very successful in applications such as wide baseline matching, object recognition, texture recognition, image retrieval, robot localization, video data mining, building panoramas, and recognition of object categories.
 
New - Speaker Recognition System
 Source code for speaker recognition
Speaker recognition is the process of automatically recognizing who is speaking on the basis of individual information included in speech waves.
 
New - Speech Recognition System
 Source code for isolated words recognition
Speech recognition technology is used more and more for telephone applications like travel booking and information, financial account information, customer service call routing, and directory assistance. Using constrained grammar recognition, such applications can achieve remarkably high accuracy.
 



The MathWorks, Inc. Google NeuralNetworks.It Octave Scilab The R Project for Statistical Computing Python Other available resources English Dictionary Download .Com
 
Software Info    About us